Field Performance Evaluation of the Cooper Environmental Services Ambient Metals Monitor (Xact 620) for Near-Real Time PM$_{10}$ Metals Monitoring

VARUN YADAV, Jay Turner
Washington University in St. Louis

Krag Petterson, John Cooper
Cooper Environmental Services

AAAR 29th Annual Conference
Portland, OR
October 25-29, 2010
High Time Resolution Multi-Metals Measurements

Field sampling, laboratory analysis
• Serial collection of filter samples
• Davis Rotating-drum Unit for Monitoring (DRUM)
• Semicontinuous Elements in Aerosol Sampler (SEAS)

Online, semi-continuous measurements
• Single particle mass spectrometry (e.g. TSI ATOFMS)
• Aerosol mass spectrometer (Aerodyne AMS)
 – no refractory elements
• Cooper Environmental Services field XRF analyzer
Cooper Environmental Services (CES) Xact 620

• Xact series
 – I: Stack Sampling
 – II: Fenceline Monitoring
 – III: Ambient Monitoring
Cooper Environmental Services (CES) Xact 620
Cooper Environmental Services (CES) Xact 620
Elements the XACT Can Measure (in Blue)

![Periodic Table Highlighted](image)

- Measured by XACT in this study
- EPA Air Toxics PM metals
Xact Performance Evaluation

LowVol PM$_{10}$ (FRM) / Teflon filter
XRF: Ca, Fe, K, Mn, Pb, Ti...

HiVol PM$_{10}$ / quartz filter
NATTS digestion protocol
ICP-MS: As, Pb, Se...
Xact vs. LowVol PM10 FRM / XRF

\[
\text{Xact} = (1.02 \pm 0.10) \times \text{filter} + (-0.1 \pm 1.8)
\]

\[
\text{Xact} = (0.84 \pm 0.21) \times \text{filter} + (28 \pm 25)
\]

\[
\text{Xact} = (1.05 \pm 0.04) \times \text{filter} + (-2.2 \pm 2.8)
\]

\[
\text{Xact} = (1.46 \pm 0.18) \times \text{filter} + (0.7 \pm 1.6)
\]

Mn: biased but highly correlated
Xact vs. LowVol PM10 FRM / XRF

Xact vs. LowVol filter / lab XRF

18-hour average Xact, ng/m³ vs. 18-hour integrated filter with offline XRF, ng/m³

Se
Selenium: Xact vs. Filter-Based Measurements

Xact vs. LowVol filter / lab XRF

Xact vs. HiVol filter / lab ICP-MS

Se: favorable comparison between Xact and PM$_{10}$ HiVol samples with analysis by ICP-MS
Collocated Study - Opportunities

• One month of collocated Xact data collected near the Doe Run primary lead smelter in Herculaneum, MO
• Examine collocated precision and practicable detection limits for various metals
• Uncertainties for source apportionment modeling (CMB, PMF)
• Missouri DNR instrument optimized for As, Hg, and Pb at remote areas
Collocated Study - Challenges

• High concentrations of lead and other elements observed
• Spectral interferences by lead and/or other elements in the plumes
• Removal of instrument-to-instrument bias for collocated precision
Collocated XACT – Vanadium (N=606)
Collocated XACT – Vanadium (N=606)

• Instrument-to-instrument Bias highlighted
• Similar trends seen for Cr, Mn, Ni and Ba
Collocated XACT – Vanadium

- Removed records with zero V concentration
- Removed records for top 25th percentile Pb

Collocated precision = 0.42ng/m3 (29%)
Collocated XACT – Vanadium

- Regression-adjusted MDNR data
- Collocated precision = 0.17 ng/m³ (14%)
Collocated XACT – Vanadium

- Binned collocated precision (33 records/bin)
Summary

- V, As, Ba, Cd, Cr, Mn, Ni, Se, Ti, Zn
 - Relative precision better than 10% at higher concentrations (exception Cd)
 - Practicable MDL greater than reported MDL
 - No data near MDL for As, Se, Ti, Zn

- Ca, Fe, K
 - Data range well over MDL
 (e.g. 5th percentile Ca>300*MDL)
 - Relative precision better than 10% over entire data range

- Co, Hg, Sn, Sb
 - Removal of high Pb, leaves no trend in lower concentration data
Next steps ...

- XRF analysis of additional lowvol filters
- ICP analysis of lowvol filters
- Examine spectral interference due to lead on other elements
- Analysis of covariance of error
Acknowledgements

- Missouri Department of Natural Resources
 - Jim Brunnert, Celeste Koon, Will Wetherell
- U.S. EPA / Office of Research and Development
 - Teri Conner, Gary Norris, Bob Willis
- U.S. EPA / Office of Air Quality Planning and Standards
 - Mike Jones
- U.S. EPA / Region VII
 - Gwen Yoshimura
- Washington University
 - Stephen Feinberg, Victoria Martin
Xact 620 Minimum Detection Limits (ng/m³)

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic No.</th>
<th>4 hour</th>
<th>3 hour</th>
<th>2 hour</th>
<th>1 hour</th>
<th>30 min.</th>
<th>15 min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>14</td>
<td>0.018</td>
<td>0.028</td>
<td>0.051</td>
<td>0.144</td>
<td>0.41</td>
<td>1.15</td>
</tr>
<tr>
<td>K</td>
<td>19</td>
<td>0.101</td>
<td>0.156</td>
<td>0.287</td>
<td>0.811</td>
<td>2.29</td>
<td>6.49</td>
</tr>
<tr>
<td>Ca</td>
<td>20</td>
<td>0.040</td>
<td>0.062</td>
<td>0.113</td>
<td>0.321</td>
<td>0.91</td>
<td>2.56</td>
</tr>
<tr>
<td>Ti</td>
<td>22</td>
<td>0.022</td>
<td>0.034</td>
<td>0.063</td>
<td>0.177</td>
<td>0.50</td>
<td>1.42</td>
</tr>
<tr>
<td>V</td>
<td>23</td>
<td>0.017</td>
<td>0.026</td>
<td>0.048</td>
<td>0.137</td>
<td>0.39</td>
<td>1.10</td>
</tr>
<tr>
<td>Cr</td>
<td>24</td>
<td>0.014</td>
<td>0.021</td>
<td>0.039</td>
<td>0.109</td>
<td>0.31</td>
<td>0.87</td>
</tr>
<tr>
<td>Mn</td>
<td>25</td>
<td>0.008</td>
<td>0.013</td>
<td>0.024</td>
<td>0.067</td>
<td>0.19</td>
<td>0.54</td>
</tr>
<tr>
<td>Fe</td>
<td>26</td>
<td>0.010</td>
<td>0.015</td>
<td>0.028</td>
<td>0.080</td>
<td>0.23</td>
<td>0.64</td>
</tr>
<tr>
<td>Co</td>
<td>27</td>
<td>0.006</td>
<td>0.009</td>
<td>0.017</td>
<td>0.047</td>
<td>0.13</td>
<td>0.37</td>
</tr>
<tr>
<td>Ni</td>
<td>28</td>
<td>0.004</td>
<td>0.007</td>
<td>0.013</td>
<td>0.035</td>
<td>0.10</td>
<td>0.28</td>
</tr>
<tr>
<td>Cu</td>
<td>29</td>
<td>0.008</td>
<td>0.012</td>
<td>0.023</td>
<td>0.064</td>
<td>0.18</td>
<td>0.51</td>
</tr>
<tr>
<td>Zn</td>
<td>30</td>
<td>0.005</td>
<td>0.008</td>
<td>0.015</td>
<td>0.043</td>
<td>0.12</td>
<td>0.35</td>
</tr>
<tr>
<td>Ga</td>
<td>31</td>
<td>0.003</td>
<td>0.005</td>
<td>0.008</td>
<td>0.024</td>
<td>0.07</td>
<td>0.19</td>
</tr>
<tr>
<td>As</td>
<td>33</td>
<td>0.003</td>
<td>0.005</td>
<td>0.010</td>
<td>0.027</td>
<td>0.08</td>
<td>0.22</td>
</tr>
<tr>
<td>Se</td>
<td>34</td>
<td>0.004</td>
<td>0.006</td>
<td>0.011</td>
<td>0.032</td>
<td>0.09</td>
<td>0.26</td>
</tr>
<tr>
<td>Pd</td>
<td>46</td>
<td>0.070</td>
<td>0.108</td>
<td>0.198</td>
<td>0.560</td>
<td>1.58</td>
<td>4.48</td>
</tr>
<tr>
<td>Ag</td>
<td>47</td>
<td>0.103</td>
<td>0.158</td>
<td>0.290</td>
<td>0.821</td>
<td>2.32</td>
<td>6.57</td>
</tr>
<tr>
<td>Cd</td>
<td>48</td>
<td>0.169</td>
<td>0.260</td>
<td>0.479</td>
<td>1.353</td>
<td>3.83</td>
<td>10.83</td>
</tr>
<tr>
<td>Sn</td>
<td>50</td>
<td>0.318</td>
<td>0.489</td>
<td>0.899</td>
<td>2.543</td>
<td>7.19</td>
<td>20.35</td>
</tr>
<tr>
<td>Sb</td>
<td>51</td>
<td>0.083</td>
<td>0.128</td>
<td>0.235</td>
<td>0.665</td>
<td>1.88</td>
<td>5.32</td>
</tr>
<tr>
<td>Ba</td>
<td>56</td>
<td>0.050</td>
<td>0.076</td>
<td>0.140</td>
<td>0.397</td>
<td>1.12</td>
<td>3.18</td>
</tr>
<tr>
<td>Pt</td>
<td>78</td>
<td>0.006</td>
<td>0.009</td>
<td>0.017</td>
<td>0.048</td>
<td>0.14</td>
<td>0.39</td>
</tr>
<tr>
<td>Au</td>
<td>79</td>
<td>0.006</td>
<td>0.009</td>
<td>0.017</td>
<td>0.048</td>
<td>0.14</td>
<td>0.38</td>
</tr>
<tr>
<td>Hg</td>
<td>80</td>
<td>0.005</td>
<td>0.008</td>
<td>0.015</td>
<td>0.043</td>
<td>0.12</td>
<td>0.35</td>
</tr>
<tr>
<td>Tl</td>
<td>81</td>
<td>0.006</td>
<td>0.009</td>
<td>0.016</td>
<td>0.046</td>
<td>0.13</td>
<td>0.37</td>
</tr>
<tr>
<td>Pb</td>
<td>82</td>
<td>0.007</td>
<td>0.010</td>
<td>0.019</td>
<td>0.053</td>
<td>0.15</td>
<td>0.43</td>
</tr>
<tr>
<td>Bi</td>
<td>83</td>
<td>0.007</td>
<td>0.011</td>
<td>0.019</td>
<td>0.055</td>
<td>0.16</td>
<td>0.44</td>
</tr>
</tbody>
</table>

aBased on US EPA IO Method 3.3 one sigma interference free.
Optimizing Sampling Time Interval

- Sampling time = analysis time (Xact operation)
- 15 minutes sampling time, various analysis times

arsenic MDL, ng/m³ vs. analysis time, hrs